

Mountain Weather Forecasting

Joshua Elms & Jacob Garside - Summit Interns

Motivation

- MWOBS produces twice-daily 48 Higher Summits Forecast
- Models can't see small features (like mountains)
- Forecasting relies on:
 - Physical weather models
 - Forecaster experience
 - Model Output Statistics (MOS)

Model Output Statistics (MOS)

• Steps

- Get gridded model data
- Get observational data
- \circ Find statistical relationship
- \circ Make forecasts
- Pros
 - Easy to compute
 - Makes good use of observations
- Cons
 - Non-physical (uses Machine Learning instead)

Example: MOS-style forecast of temperature in deg F @ Mt. Washington using 9 nearest points

Data

- MOS Products: GFS MOS, NAM MOS, NBM
- Period of study: 11/01/2020 05/16/2024
- Lead times: 6-72 hrs at intervals of 3 hrs

Variable	Short name	Units
Temperature	T	°F
Dewpoint Temperature	T_d	°F
Dewpoint Depression	$T - T_d$	°F
Wind Speed	V	kts
Wind Direction	θ	degrees

Metrics

- NWS verification standards:
 - MAE how far off is the average forecast?
 - Bias does the model systematically forecast high or low?

Temperature Verification

• All products perform well

• Errors rise from ~2 °F to ~3 °F

• MAE Differences small (< 1 $^{\circ}$ F)

• Low bias

Wind Speed Verification

• GFS / NAM outperform NBM

• Error rises steadily: 5 to 7.5 knots for GFS/NAM

• Only notable bias is NBM

Case Studies

- Picked representative plots
- Temperature
- Dewpoint
- Dewpoint Depression
- Wind Speed
- Wind Direction

Wind Speed

- Low pressure
- Southerly winds
- GFS MOS error of 44 knots
- NAM MOS error of 35 knots

Dewpoint

- High pressure
- Brief dry periods
 - Fog "mixes" out
- NAM MOS error of 42°F

Conclusions

- Rankings
 - Temperature, Dewpoint, Dewpoint Depression
 - : GFS > NAM > NBM
 - Wind Speed and Direction
 - GFS > NAM >>> NBM
 - Highest wind errors found under southerly winds
 - Highest dewpoint errors caused by brief clearing

Future Work

- Study new version of NBM
- More variables (probabilistic, visibility, temperature extrema)
- Break down analysis by season

Thank you!

